On Filippov Algebroids and Multiplicative Nambu–Poisson Structures

نویسندگان

  • J. Grabowski
  • G. Marmo
چکیده

We discuss relations of linear Nambu-Poisson structures to Filippov algebras and define a Filippov algebroid – a generalization of a Lie algebroid. We also prove results describing multiplicative Nambu-Poisson structures on Lie groups. In particular, it is shown that simple Lie groups do not admit multiplicative Nambu-Poisson structures of order > 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nambu-Poisson manifolds and associated n-ary Lie algebroids

We introduce an n-ary Lie algebroid canonically associated to a NambuPoisson manifold. We also prove that every Nambu-Poisson bracket defined on functions is induced by some differential operator on the exterior algebra, and characterize such operators. Some physical examples are presented.

متن کامل

Non-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets

We show that we can skip the skew-symmetry assumption in the definition of Nambu-Poisson brackets. In other words, a n-ary bracket on the algebra of smooth functions which satisfies the Leibniz rule and a n-ary version of the Jacobi identity must be skew-symmetric. A similar result holds for a non-antisymmetric version of Lie algebroids.

متن کامل

Poisson Structures on Lie Algebroids

In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.

متن کامل

Stability of higher order singular points of Poisson manifolds and Lie algebroids

We study the stability of singular points for smooth Poisson structures as well as general Lie algebroids. We give sufficient conditions for stability lying on the first (not necessarily linear) approximation of the given Poisson structure or Lie algebroid at a singular point. The main tools used here are the classical Lichnerowicz-Poisson cohomology and the deformation cohomology for Lie algeb...

متن کامل

On characterization of Poisson and Jacobi structures

We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids. MSC 2000: 17B62 17B66 53D10 53D17

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008